sinn+1)-sin(n-1)x= .. Rumlah Jumlah dan Selisih Sudut; Rumus jumlah dan selisih sinus/ kosinus/ tangen; Persamaan Trigonometri; TRIGONOMETRI; Matematika
I'm studying convergent sequences at the moment. And I came across this question in the section of Stolz Theorem. I realised that $\{x_n\}$ is monotonously decreasing and has a lower bound of $0$, so $\{x_n\}$ must be convergent, and the limit is $0$ let $L=\sinL$, then $L=0$. So to prove the original statement, I just need to prove lim nXn^2 → 3, and in order to prove that, I just need to prove $\lim \frac{1}{x_n^2} - \frac{1}{{x_{n-1}}^2} \to \frac{1}{3}$ by Stolz Theorem but I have no clue what to do from there. PS $x_{n+1}$ is $x$ sub $n+1$, and $x_n$ is outside the square root. Thanks guys
. adx7rfi4wg.pages.dev/470adx7rfi4wg.pages.dev/82adx7rfi4wg.pages.dev/29adx7rfi4wg.pages.dev/333adx7rfi4wg.pages.dev/51adx7rfi4wg.pages.dev/251adx7rfi4wg.pages.dev/274adx7rfi4wg.pages.dev/478
sin n 1 x sin n 1 x